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A number of problems on elastic equilibrium of circular plates of variable thickness and of 
shells of revolution, can be reduced to integration of hypargeometric equations (Either 
Fnchsian or degenerate). Some particular solutions of these equations are logarithmic. In 
connection with the construction of solutions of such problems described by second order 
h 

v 
pergeometric equations, the author introduced in [ 11 a hypergeometric function @ fo, b; c; 

z of the second kind end estrMished its fundamental functional relations analogous to 
those available for the hyper ometric function Ffo, b; c; z). 

Functional relations of (0 o, b; c; 11 have found applications in the theory of circular ?e 
plates of variable thickness, conical shells of linearly variable thickness 12, 3 end 4 e.a. 

At a later date this function was investigated by Niirlund in [5] who also introduced 
another fonction 

Y (0, b; c; z) = D (a, b; c; z) + I$ (a)+ $ (b) - $ (c) - -$ (i)I F (a, b; G 2) 

(I# (a) = d In I’(a)/da) (0.11 

end in his paper functions @end ‘# were denoted by C and g respectively. Here we have ed- 
opted the notation v(o, b; c; 11 as logically related to vfa; c; tl which was used in a log- 
arithmic solution of a degenerate hypergeometric equation given in 161, p. 248. 

Functional relations for tI’ lo, b; c; 11 which we shell also call a hypergeometric func- 
tion of the second kind, are simpler than those for @,(a, b; c; zz). 

Fairly recently, various authors 13, 4 and 7 to lo] introduced generalized hypergeomet- 
ric functions of the second kind and investigated some of their properties in connection with 
problems on asymmetric deformation of circular plates of variable thickness and of hollow 
conical shells of revolution. 

We shall denote a generalized hypergeometric function of the second kind containing a 
term with Ins, by @ (CZ, ,..., a ; @, ,..., 
troduce, for this &s’e, a fun&n 

@,; I). In analogy with the functions (0.11 we in- 

pW* (%,*.*r ap; Blr..., B*; 21 = pQq (a1 ,..., a,; l$,..., 0,; 2) + 

+ [‘l’@J +a..+ 7c1 @,) - $ @J -...-$ (B,, - 9 (111 pFg (~~,...,a~; PI,... &; z) (O.21 

Generalized hypergeometric function of the second kind containin terms with Inr end 
(Inr12, terms with In I, fInr12 and (Ins) jetc. shall be denoted by p 8 

/3,; 21, p@$3) (Cti,...,U,; fli,..., /3+ 21 etc. 

$2) fut,..., CL,,; @t,..., 

The purpose of the present paper 1s to generalize the results obtained by the author and 
his collaborators on the properties of hypergeometric functions of the second kind and to 
illustrate it with examples of their effective use in problems on the state of stress in plates 
and shells. 

1. Some fundamental properties of hypergeometrlc functions. The 
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basic system of particular solutions of a hypergeometric Eq. 

z (1 - 2) (1.1) 

near z = 0 when c = 1+ m(m = 0, l,...) and a, b f 1, 2 ,..., m, is given by functions 

(1.2) 

r-1 

(I, (a, b; c; z) = 1112 F (a, b; c; 2) + 21 

(1.3) 

(Ifflts -- n (R - I). . (u -i-II -I), [Q],, :: 1) 

The linesr combination (0.1) of particular solutions (1.2) and (1.3) should also be con- 
sidered as a logarithmic solution of (1.1). 

Functions @(a, b; c; L) and \Y(a, b; C; a) are single valued analytic functions of z in the 
region largt( < n with a cut along the real axis from -m to 0. They can be represented 
within a unit circle 121 < 1 by expressions of the type (1.3) and (O.l), containing convergent 
series. Outside the circle of convergence they cau be found by the method of analytic con- 
tinuation of indicated expressions. 

Expression (1.3) becomes meaningfess for @(a, b; c; z) when one of the parameters s 
and b assumes one of the following values: 1. Z,,.., c - 1, and (0.1) becomes meaningless 
for ‘%‘(o, b; c; z) when, in addition, u or b becomes zero or assumes a negative integral 
value. In these cases, particular solutions of (1.1) will be rational functions. We shall not 
consider them in this paper and we shall therefore assume that o, b f c - l,..., 1, 0, -l,... 

InEll g we ave for the function @(o, b; c; I) the differentiation and integration formulas, 
a transformation formula, dependence of fnnctions on their arguments I and 1 - z 8s well as 
some recurrent relations for fnnctions whose parameters o, b and c differed in values by 
whole numbers and a full system of recurrent relations between contiguous functions. 

Using (0.1) to pass to functions T&I, b; c; 2) in the formulas and relations just mention- 
ed, we can see that most of them become simplified in the process. Below we give the ba- 
sic functional relations for y(a, b; C; 2) which have been found useful in constructing sol- 
utions of problems on axisymmetric deformation of circular plates of variable thickness and 
of shells of revolution (conical shells of linearly varying thickness and spherical shells of 
constant thickness). 

A differentiation Formula 

& Y’(,z, b; r; 5) $ Y (0 :- 1, b 1; r :. 1; 3j (1.4) 

a transformation Formula when s + b = 0,~ 1, ,., 

Y (0. 1,: r; z) = (1 - zy-Q-b Y (c - (2, c -- b; c; 2) (1.5) 

and a set of 15 relations between contiguous functiona 

1. (e - 2a - fb - 0)zjY + a (1 -z)Y(a+l)-(fc-u)Y(a-f).= n 

2. (b-a)Y+aY(n$1)-bY(b+l)==O (1.6) 
. . . . . . . . . . . . I.. . ..I............... . . . 

14. lb - 1 - (c - a - 1) z 1 Y + 

-:- (c - b)Y (b - 1) - (c - 1) (1 - z)Y (C - 1) :y o 

$5. rfc- I - (2~ - a - b - 1) z] Y + 

+ (c - n) (c - bfz Y (E i- 1) -e (c - 1) (1 - 2) Y (c: - 1) =-i 0 

Y = Y (0, 6; c; z), Y (a -& 1) = Y (Q f f, 6; c; z) 

Y (0 f 1) = Y (a, b _+ 1; c; z), ‘I’ (c + 1) = ‘3’ (a, b; c f 1; z) 

which outwardly coincides with 15 Gaussian relations for contiguous functions F(s, b; c; 2) 

(sea[lll, p. 130). 
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Linear dependence of hypergeometric functions on z and 1 - I when a + b = 0; t l,... is 
given by 

xgr(@, b; c; q=(_ j)r r(r --n)i’(l --b?@--Y(j 
1’(C-u---_~- If 

- :Y-lr . \ 

x F(c-a, c-b; c-a-b :- 2; 1 - c) 

(C = 1 + m; m - 0, i,...; a, b $1 1, 2 ,...; jarg z I < ax, 1 arg (1 - z) 1 <IX) (la7) 
Formulas (1.4) and (1.5) also coin&de with the corresponding formulas for F(o, b; c; zl. 

We should note that the condition o + b = 0, k l,.., holds for (1.5) and (1.7) in problems nn- 
der consideration. 

Applying the relations (1.6) once again, we can derive linear relations between y(o, b; 
c; z) and another two functions of the type Y(o -C 1, b + m; c + n; 11 where 1, m and n are 
integers and in which coefficients are polynomials in E. The latter relations also outwardly 
coincide with corresponding recurrent formulas for F(o, 6; c; z). Integral representation 
and a formula for analytic continuation of yv(a, b; c; I) are obtained as particular cases of 
(4.7) and (4.8) for pyIlq (dt,...,$,; /? r,..., fi,; z). 

2. Logarithmic solutions of hypergeometric equations of higher 
order. A hypergeometric equation of the (q + 1)th order has the form 

--z z&-l-al i j ( 22 +a*)] 1Y = 0 
*“\ dz 

(2.1) 

where cx r’*..,ap and pt. . . . . fi, are arbitrary complex parameters while p and g are positive 
integers (p $ q + 1). when p = q + 1, then Eq. (2.1) is Fuchsiau and has three essantial sin- 
gularities 2 = 0, z = 1 and E = m. When p ,$ q, then (2.1) becomes a degenerate hypergeomet- 
ric equation of the (q + 1)th order with one essential singularity z = 0 and one removable 
singularity 2 = 00. If none of the parameters /3,(r = 
,?. - p, (s rf t; a, t = 1, 2 ,..., q) 

1, 2,..., q) and none of the differences 
are equal to zero or to an integer, then the basic system of 

particular solutions of (2.1) has the form 112 and 131 

Wl = pFrl (al, . . ., a,; pl, . . ., p,; 2) (2.2) 

w,,,, = z? ~p~~(l+a~-_Pn,...,l-tap-Pn; 2--p, 

1 l-P1-Ppn”, . . ., It-P,--P,; 2) (‘L--1,2,...,(1) 

“, Pdnf. . Ia& 3 
pPrl (a,, . . ., up: PI, . . ., P,; 2) z--; 1 + h 

,l=L IPiln . . . [P&E -a 
(2.3) 

where oFo is a generalized hypergeometric function and m asterisk means that the parame- 
ter 1 +/!I, - A, is dropped .when s = t. 

Series (2.3) converges for all finite z when p 4 q and for Iz( < 1 when p = q + 1. When 
some of the parameters R,(s = 1, 2 ,..., q) assume positive integral values, then (2.1) has a 
corresponding number of logarithmic solutions, which can be obtained in terms of various 
fomrs of generalized hypergeometric functions of the second kind, 

If e.g. fi 

21 

= 1 + m (m = 0, I,...), then, using either the method of limits [Z] or the Frobe- 
nius method 141, we can obtain the following second particular solution 

II-, = ,,G$ (Xl. . . . axI,; 1 + ?)Z, pz, . . ., pq; 2) = 

:- III “,,F,, (Xl, . . ., 3. p: 1 + m, PZ,~ . .,pq; 5) + 
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1 
--- 

,n + s p?f-j-1 -.**- p,+L-f 1 (2.4) 
(Up#l ,..., m;r=l,..,, p) 

when fl = 1 + m and 8, = 1 + k (m, k = 0, l,...; m, 
tained by the Frobenios method in the form (lo] 

<k), a third particular solution is ob- 

W 3=pUJq(2)(al ,..., up; l+m,l+k pp;z)= ,..., 

=-((Inz)2pFq(a1 ,..., up; i+m, l+k,.,., &; z)+ 

+2lnz pdD,(aI ,..., zp; 1 fm, 1 fk ,..., Pq; z)+ 

+ 2 (--l)%2! 
ti (n-I)!( 

x 
n-M---I)![1 +k--1,. . .&,---I,, z_,,+ 

n==m+1 
[a1 - nl,. * .[a,---1, 

(2.5) 

(ur#l ,..., k; r=i ,..., p) 

A,=r,(ul~:_,+...+a~+ls_,--l-...- 1 1 -- 

0=1 
m + s P,fs--1 s ) 

~n=~~r(.~+i-l,,+.-.+(.,:._l,,- i 

1 

(m + s)2 -. *.-&ZJp 1 

1 1 \ . . .- -- 
au-n+s-1 s-l) 

(2.6) 

Here an aateriak means that the term l/(s - 1) is dropped when s = 1. 
Using the method indicated above we cau obtain logarithmic solutions of (2.1) in the 

case when three or more parenetere &(a = 1, 2 ,..., q) are equal to positive integers. These 
solutions are given in terms of generalized hypergeometric functions of the second kind, 
containing In I in the third and higher powers. Thus if j?? = 1 + m, p2 = I+ k and p3 = 1 + 
t 1 (m, k, I= 0, 1 ,...; m,< k,< I), then we have a fourth so \ ution in the form 

Wd = ,$Dg(‘) (aI, . . ., ap; 1 + m, 1 + k, 1 + I, . . . , jjp; z) = 

= (In z)~ pliq (aI, . . ., ap; 1 + m, 1 + k, 1 + I, . . ., Pa; z) - 

- 3 (111 z)’ pOq (aI, . - ., a,; 1 + m, 1 + k, 1 + I, . . ., P,; z) + 

+ 3 In z pCl)q(2) (a.,. . . . . x,,; 1 + m, 1 + k, 1 + 1. . . ., Pq; z) + 

-+!f,+L?_,)z-“f 
n=1 

+ q-l)%! i ()1-I)!(IL--/1-l)![l-fk--rll. ..[Bs-~~]~C_,z_n+6~_l~m+~;~ 

n=m+1 
[?1- ,a],... [up-n], 

xw!k! i (-1) 
~-1(~~-~)!(~z-~~~-~)!(n-k---1)![I~i--z],...[~p--n], _ 

[al- ~]u. .[aP- h]u z u+ 
?a=/.+1 
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(a,#1,2 ,..., l;r=l,..., p) (2.7) 

where 

‘n = i [(al +‘, _ I)3 + . * ’ + (a, +I. _ 1)s 

1 1 -- 

s=1 ---“‘-(p,+s-l)~ ,‘9 (111 -t s)3 1 
Bwn=3[(aI_.j!s_*)z +“‘+(a,-,~t._~).-(I~~-~+s)P-.‘. 

s=1 
1 

= * *- (B* - n + s - I)2 -& 1 n 
C_,=$(l +m)-$((n-r??m)+Z’ 

p=t ( 
1 

k-:+s+..*+ pl-.:s-l - 

1 - 
aI--2+.9--i -**‘- a,--h+s--l 

-- 
s--l ) (2.8) 

Generalized hypergeometric functions of the second kind (2.4), (2.5) and (2.7) are sym- 
metric in parameters ~T,fr = 1, . . . . p) and in parameters 8, with nonintegral (fractional) val- 
ues. Parameters & wrth integral values are written in a nondecreasing sequence and they 
define the number of terms vdth negative powers in the series (2.41, (2.5) and (2.7). 

If one or more parameters arfr- l,..., p) are equal to one of the values l,..., 1 when 
@t= 1 +m, pl= 1 + k and p3= 1 +Z6n, k, 2 = 0, l,...; m 6 k< I), then the number of log- 
arithmic solutions diminishes md some of the particular solutions degenerate into elemen- 
tary functions. The construction of solutions for various cases of parametersC$(r = l,..., p) 
and &(a = l,..., q) possessing integral values, shall not be considered here. 

3. Logarithmic solutiona of an inhomogeneous hypergeometric eq- 
uation of higher order. The particular solution of such an equation 

-I ( zf Z$f PI-l).. .(z;+pp-1)- 
(3.1) 

-“(“i +aJ.. .(z$ +a,)}~Y+~za=O 
where A and X are constants and p ,< q + 1, can also be found by means of the above method, 
in terms of generalized hypergeometric functions (of the first and second kind) [7]. When & 

h+& - 140, - l,..., then a particular solution of (3.1) is given by _ 

Jr@) = - AZ" 
h(h+pl-i)...(k+p,-l)X 

x wlFq+l(u~ + h, . . ., ap + hi; PI + A, . . , P, + X, 1 + hi 4 
When A= - m (m = 0, l,...), then the generalized hypergeometric function of the second 

kind 

w(c) - - 
A[al-mm], . . .[a*- rnlm 

[--l,[Pl--l,...~PP-~l,(P~-~--l)...(Pg-~--l) 
X 

(3.3) 

x~+~~~+~ (1 + m, al, . . ., up; 1 + m, PI, . . ., Pa; 4 

a, # 1.2, . . ., m; r = 1,2, . . ., p; P, #m + 1, m, . . ., 1, 0, -1, -2, . . .; s = 1,2, . . . . cl) 
is a particular solution of (3.1). 

Solution (3.3) loses its sense of one, two etc. of the parameters fl,(a = l,..., q) are equal 
to integers I,..., m + 1. In this case the expression for a particular solution of (3.1) con- 

tains a generalized hypergeometric function of the second kind of the form (2.5), (2.7) etc., 
namely 
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;a,.#i,2 ,..., k; r=f,2 ,..., p; &#k+1, k ,..., 1.0, -1, -2 I...; s=2,3 ,..., q 

for ih =-l,~~=l+m,~a=l+k(l,k,m=0,1,2 ,... ;l>k;;lsm) 

)j/-m = [a1 - l]** . [up - Z]p4 
cim! k! (1 - m)! (l- k)! I- l]l [ps - 1 - l]l+l. . . [BP - 1 - I],,, x 

xptl~qtl 
(31 1 

( $ I, 311, . . ..ap. 1 + m, 1 + k, 1 + I, P3,..., Pp; 2) (3.5) 

(a, #i, 2,. . ., 1; r = 1,2,. . ., p; f& # I+ 1,. . ., 1,0, -1, -2,. . .; s =3.4,. . . , q) 

etc. 

If h= 1, 2,... then, choosin 
ei 

the linear combination of (3.2) and first of the solntionllr 
(2.2) as a particular solution o (3.11, we obtain it in the form of a polynomial in t. 

IfX 9~ - m (m = 0, I,...) and 8, = I + k (k = 1, 2,...; k > I& then, con~trwting a definite 
linear combination of solutions (3.3) and (2.4). we can find a particular solution of a in- 
homogeueoos Eq. (3.1) in the form of a polynomial in l/r. 

Similar solntfons are obtained in cases dorresponding to solntions (3.4) and (3.5) if we 
put, respectively, 

h =-k, &=l+m, f&=1+1 (Z>k>m) 

h = -l, PI =I 1+ m, ffz = 1 + k, p3 = I (h>l>k),mf 
4. Some basic properties of 

Fo;; OPT [2, 3, 4 and 71 
eneralired hypergeomatric functions. 

some proper % es of @(a, b; c; 11 are generalized for the func- 
. . ..abfll..,., /3 ; I). Introducing a fnuctfon PY&+.., a,; /3 P...t &; 2) into 

fnncti&rZl Zations for pdj$r,..., a ; @ 1,..., &; 11 according to the FormoIa (0.21, we ob- 
tain the following basic functional r$ations. 

A differential formula 
d Y _ Ql.. . ap 

dz” q-(l-/-m)P~...& 
pYq(az $- 1,. . . , up 4 1; 2 + m, 8% + 1, . . . , gq + 1; 2) (4.1) 

and recurrent relations 

(42) 

( (4.3) 

X&Y* = %(Pm--1) y 
IL-- l_a,[P *(%l+l)-p~*an-Ifl (4.4) 

where 

(%I -~m+*)P~s=~~p~q(~,+~)-(P,-l)P~q(~m-i) (4.5) 

fn = 1, 2, . . . , p; m = 1,2, . . . . g 

PYq = PY, (al, . . . , up; 1 + m, i32, . . . , BP; a) 

pYp(a,+~)=pYY,(al....,a,+l,...,a,; 1-t-~& ,..., pp;z) 

PY, (Pm - 1) = nYyp (01, . . . , ap; 1 + m, pz, . . , , P, - 1, . . . , pQ; 2) 

(4.6) 

(4.1) to (4.5) 
8 XI. 

formally coincide with the corresponding relations 
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Integral representation for the function oYc(Ut,..., an ; 1 + m, /3Z,..., 8,; 2) in the form 
of the Merle-Bums integral is analogous to the Bums’s iqte 
tionpFq(~t,...,~p; Bt,..., #!f,)[I51 and has the form [9 and 6 

ral representation for the func- 
Yi 

(--A)“-’ ’ (a1). ’ * r (ap) 

ml r (Pd. * * r (P,) 

PYFq (al, , . . , ap; 1 + m, pz, . . . . p*; s) = 

2 +jrn 

=2ni 
s 

~(a~+s)...~(ap+s)~(-m-s)~(-s) z”dP 

r(&+s)...r(Pq+s) 
(4.7) 

---Ial 

( 
IargzI<min z, 

( 
4-P -n , 

2 i 
p=q+fLp, [zl<iwhenp=q+l 

1 
Here the path of integration is curved so that the poles of the integrand function at the 

points s = -at -n,..., -up -D 6~ = 0, 1, 2,...) remain to the left of the path and at the 
s = - m, - m, - 6n - 1) ,..., - 1, 0, 1, 2 ,..., 
(4.7) can be easily confirmed b 

on the right-hand side of the path. Validity of 

grand at the poles r (- m - s 
calculating the integral as a sum of residues of the inte- 

tFt -S)* 
When p = q + 1, then a well hnown method [ 161 a ows ua to obtain, from the integral rep- 11 

resentation (4.7), the following formula for analytic continuation of the function 

into the region 121 > 1 
q+~Y#l?..., aq+d 1 + m. Bar..., &; 2) 

(_f)rn_I r (al) . . . r (a,,,) 
m!r(p,)s,,r(p,) ptl~q(al....,~q+l; ~+~f%,...,P~;z)= 

= C$ Wt) r (at - m) VQ - ;:,i2;j;l-l, ;;I 2;51- at). . . r (a,,, - at) x~4.8) 

kl 

x z~~~F,tat, at - m, ~+~t--PB,*..,I+ut-Pq, 

f+at-al,..., l+at-at_l, l+at--at+,,...,i+a,-aa,,,; z-1) 

where larg zl < n and 121 > 1. 

5. Some basic functional relationships for generaIixed hypergeo- 
metric functions. 
Formulas 

Direct differentiation of the power series (2.5) yields the following 

’ CD @)(cQ, . . . , ap; I -i-m, 1 +k, . . . 
dzu q 

t Pq; zf = (5.1) 

al. * 1 up 

=(I+m)(l+k)...pq fpb)qfa’f~l + 1, , . . , ap+k 2+m,2--t_k,...,f3,+1: z)+ 

+2AoP@q(al+1 ,..., a,+l; 23-m, 2+k,.. ., Pq+i; z)+ 

+( 1~2-~o)pFq(al+1,...,ap+1; 2+~,_2+k,...,Pq+1; z)] 

1-L 1 .-lo = _ j . . ‘+-_ 
1 1 

- - _ _ -...-_ 

aI aP f+m f+k FL 

If0 ..= 1 -i.. . . _I_ _!_ 

ala aPa -& -&jr*-& 

d 2 p@yfp)(aI, . . . , aP; 
l-k 

i + m, I + k, . , . , Ps; 2) = 

zr- hJ x-t - 
I. 
p,I@q+lfo’ (al,. . . . aI,, h, + 1; 1 + m, f + k . . . , Pc, h; 2) + 

:! 
+, 

P+lmq+l (cl . . . , aI). k-+1; 1+nt, Iffk..., Pq7 k z)] (5.2) 
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Assuming that x =a 61 + l,..., p) or A= @,,, - 1 (m = l,..., q) we obtain, from (5.2). the 
following recnrrent relantions 

(2) = 
a, n@c(‘) (a, + 1) + 2n@,, (a, i- 1) (5.3) 

( Z&-&-l 1 4 C2) = (pm - 1) 
P 9 

p4q @) (Pin - 1) t- 2,,@, (Pm - 1) (5.4) 

2 2. Jbr,(2) = pa”> 1 1, 
m an [ 

lsQq(2) (a, + 1) - @P) (pm - 1) + 

2 
+ - ?@(I (2 

on 
nt I)- p,2_1 p@,p(Pm-1) 

1 

(a, - pm !- 2) p’D,(2) = a u p@‘r1(2)(a, + 4)-(P,--l),@,(2’(P,- 1) f 

+2,~,(a,i-1)-22p~q(Pn--1) 

(5.5) 

(5.6) 

where the notation is similar to that in (4.6). Similar differential and recurrent relations can 
be derived forp@03(aI ,..., a * 8, ,..., p * z). 

P' 9' 

6. Application of hypergeometric functions of the second kind to 
the theory of plates and shells. We shall now consider some examples using the 
following notation: h is the thickness of a shell, r is the radius of a circle parallel to the 
mean surface of the shell, R is the radius of curvature of a spherical shell, cp is the angle 

made by the normal to the mean surface and the axis of the shell, a is the angle made by 
the meridian and the axis of a conical shell, Nr and N,g are meridional and tan ential 

% 
stres- 

sea, %r, and Xu are the changes of curvature, E and v are the elasticity modulus and the 
Poisson’s ratio, 1 is the meridional coordinate for a conical shell, r and 8 are polar coordin- 
ates for a plate, w is flexure of a plate, T - To 

linear coefficient of thermal expansion. 
is the change of temperature and a, is the 

lo. Axirymmetric drfonnation of a apharical ahell. The homogeneous equation of this 
problem, in terms of a complex function taken as a solution, 

N = N, + /c”x” (k, = (v f i}l) /:'h3/c0*R, p = ~/c~~R~/~~--v&, co2 = 12(1 -$))(6.1) 

is transformed, on introducing a new function IV and another variable 4 given by 

X = coscpW, E = sin2 (cp I 2) (6.2) 

into (l.l), in which 

z -7 I; a, b = 3/2 + 6, 6 = ‘12 JfWG; c = 2 

Using particular solutions (1.2) and (O.l), we obtain the following general solution 

IV = C, F (V2 -t- 6, 3/2 - 6; 2; E) + c,y (3/2 + 8, ‘12 - 8; 2; E) (6.3) 

where Ct and C, are complex constants of integration. Applying, subsequently, a well known 

transformation formula for F (a, b; c; t), Formula (1.5) and relation (1.7) for y (o, b; c; z) 
and passing to new constants of integration, we obtain 

IV = c’t(1 - i)-’ F(’ 2 + 6, ‘12 - 6; 2; E) + C?’ S-IF (l/r + 6, ‘/2 - 6; 2; 1 - E) (6.4) 

When the tables of solutions were computed covering all stresses, moments and displace- 
ments, only four infinite series defining functions. 

Re F W2 -l-&V2 - 6; c; 4), Im F (V2 -I- 6, 1/2 - 6; c; E) (c = 2,3). 

were summed. 

2’. Axirymmetric deformation of a conical shell of linearly varying thickness. 

h = h, (1 - 2) 5 = III, (h,, 1, = const; 0 < z < 1, 0 > z > - 1) (6.5) 

The homogeneous equation of this problem in terms of a complex function 

N -= NI. fk,(l --)?z” 

is given by (1.1) in which 

r; 11. : N; a, b = ‘12 * 6, 6 = V$/d - 2v + ip; c=3 

The general solution for N has the form 
N = C, F (It2 + 6, II2 - 6; 3; x) + C,Y (V2 + 6, r/2 - 6; 3; 2) 

(6.6) 

(6.7) 
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and it can be used whether the thickness of the shell decreases CO,< x < 1) or increases 
(O>x>>- 1) in the direction of the outer contour. 

When - 1 >r x; > - ~0, we obtain a solution by applyin g analytic continuation formulas to 
functions F (a, 6; c; x1 and y(o, 6; c; n). 

When O,C x < I, then Formulas (1.7) and (1.5) should be used to obtain the second par- 
ticular solution (with a constant CJ in terms of F (Y, + 8, % - 6; 3; z) and F (% + 6, % - 6; 
3; 1 - x). Subsequent separation of (6.7) into a real and imaginary part and computation of 
stresses, moments and displacements in terms of functional relations for F (a, b; c; ~1, 
yields expressions for these magnitudes in terms of eight functions [4] Re F (% + 8, K - 8; 
c; z) and Im F(% + 6, % - 6; c; n) (c = 1, 2, 3, 4). 

Only four series defining functions at c = 3 and 4 are summed. The remaining functions 
are obtained by means of recurrence formulas. 

3’. Cyclic~ly symmetric bending of a circular plate of radially varying ~li~d~c~ rigid- 

icy 
D = &(I - I), 5 ;= (/Y1#0 (r,,, DO = co&; a, = e/m; m = 2, 3,...) (6.3) 

under the action of contour and surface loads, the intensity is given by 
(1 = p 9 et,> !itj (‘I =const; i--0,1,.. .; k=2,3 ,...) (6.9) 

On substitution of a function W according to 

1” 3 x(z+k)~a~kV cos k0 (6.10) 

the problem reduces to integration of a differential Eq. (3. I), in which [ 31 

z = 2; p = r,* q = 3; fir = 1 + m, $r = 1 -I- mk 

&-I-+ m(1 ;-k); 
&‘+2-4~*~_l A 

16qjp 
2 I =-_ 

lI”rn” 
The parametersu,,(n = 1, 2, 3, 4) are roots of Eq. 

a”-AA,as+Aza2-AA,a+A,=0 
A, = 4 fk + If/a, + 2, A, = 14k2 + 6k (a0 + 2) 4 a,? + (7 -t- v) a, + 41/a02 
A, = 14ka (aa $ 2) -b 2k (cQ,’ -I- 7a0 -!- vao i- 4) -k ad (3 f v) f 2a0 (3 f v)l/UOg 

A, = [k2 (a8 - vao t (i + Zv) + k (3 + %+(a0 + 2) + 2a,(l + v)I / af 

With the results of Sections 2 and 3 and by substitution (6.10). we obtain a general sol- 
ution of the considered problem in the form 

w = ~l’~(‘+k)~ if?, J, (al,.. . , a,; 1 -!- m, 1 f mk, 1 -/- m i- mk; x) j- 

+ C, ,Y, (al,.., a,; 1 + m, 1 + mk, 1 i- m + mk; x) -j- 

+ C, 4fD,‘2i (a 1,.‘., a,; 1 f m, 1 f mk, 1 + m + mk; x) i- 

+ C,@,f@ (al,..., a,; 1 f m, 1 j- mk, 1 + m $ mk; x) j- W(*)j cosk0 &“‘) 

where C,~I = 1, 2, 3, 4) are real constants of integration. 
The particular solution W(s) of a nonhomogeneous Eq. (3.1) when A is not equal to sn in- 

teger, has the form 

@z) _ _ 
A~VZ fj+2-k) m-t 

h (A + in) (h + mk) (h -I art :- rnk) 
X 

X sF~(UI--I t*/z(j1-2-k)m, . . . , %--I $l/a(i+2-k)m, 1 

i/2 (i + 2 - k)m, 1/2 (i + 2 i- kf m, ‘I, (i -I- 4 - k)m, 

When A= 1, 2,... ori 

VP (j + 4 $- kfm, 5) (6.12) 

= - ,U (/.I = 0, l,..*; m \< g < mk), the particular solutions W(o) are ob- 
tained in terms of polynomials in % and l/x respectively. Bending moments are computed with 
help of the formulas of differentiation of generalized hypergeometric functions given in Sec- 
tions 4 and 5. 

4’8 Cyc~~c~ly symmetric ~e~eiae~c deformation of a sloping conical shall when tan- 
sile and bending deformations are purely then&, 

‘I.% 11 
1 ’ 

‘/ah 

I 

12 ’ 
“T --= h c+(T-Z’o)d; ~,r&xkO, xT=p 

I 
c+(T-T”)gd?J = x,rjcos k0 

--‘:* h --‘;z ir 

(E;, x,-con&; j==O,l,...; k=2,3,...) (6.13) 

Solution of this problem can, after separation of variables and certain substitutions, ba 
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redoced to Eq, (3.11 in which (4 

z==iror (fro- *&p/h, co = v/12 (i - v”); P = 2, q=3 
a1 = ,1 + k, a2 = 3 -/- k, pi= 2, /jp := 1 -j- 2k, @a = 2 + 2k, h = i- k 

iEh 
1 = - 7 

d C 
iej i- ~~j](i-~k~(j-+k+l)(i_-k)(i-k+ 1) 

Fonction W is related to the complex function 
N-N,.-+-N,+ko(x,.+~,) (ko - f tRh”/‘co) (6.14) 

which is a solution of this problem, by the following Formula: 
N = akw COB k8 (6.15) 

The general solotion for the function N has the form 
N = [Ctzk aFJ (I + k, 2 + k; 2, 1 + 2k, 2 + 2k; z) + 

+ C,&‘i’, (1 + k, 2 + k; 2, 1 + 2k, 2 + 2k; z) + (6.16) 
+ C~Z-~ lFa (1 - k, 2 - k; 2, I--2k, 2-2k; z) + 

+ Q-k @s (1 - k, 2 - k, 2, 1--2k, 2-2k; z) -+- N(*)] cos k8 

where Cs61= 1, 2, 3, 4) are complex constants and function IV(T) has the form 

N(T) = 
A li+ fir-jU+ &_j 

2(k-i--lY(k-ii)! [i+kl,+k_j[i+k+lll+k_i 'LX 
xsQr@)(k--j+l, 1-i-k; 2+k; 2, k--j+l, 1+X, 2+2k;z) (6.17) 

when j = 0, 1, 2,..., k - 2. 
When j = k - 1, k,..., the function N(T) can be obtained in the form of polynomials [A. 
Having obtained a solution for N, we can find solutions for remaining complex stresses 

and moments using the well known formulas (41 together with the formulae for differentiation 
of generalized hypergeomctrlc fnnctions, given in Sections 4 and 5. 

In the third and fourth particular solotions (with integration constants C, and Cd) hyper 
geometric functions reduce to elementary functions. 
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ON THE DETERMINATION OF KINETIC STRESS FUNCTIONS 

IN ELASTODYNAMICS PROBLEMS 

PhiM Vol. 31, No. 4, 1967, pp. 701-703 

N.A. KIL’CHEVSKII and E.F. LEVCHUK 
(Kiev) 

(Received April 19, 1966) 

The purpose of the paper is the development of a new method of solving dynamic problems 
of elasticity theory by introducing kinetic stress functions [l to 4. Eqnations which the 
kinetic stress functions satisfy are presented here, and the form of the general solution of 
these equations is found. 

Let as consider the square of a line element in some Riemann space, which we shall 
designate as generating: 

ds2 = [i + 8(P,& (Xj, t)] dakdzk - Ca [I + ecpd (zj,t)] dta (k, j = 1, 2, 3) (1) 
where e is an arbitrary small parameterm 9 a constant to be determined, cp,,drl, t) = ~~(x $ 

x2, x3, t) the kinetic stress functions. It is seen from (1) that for e= 0 the Riemann space 

degenerates into a Euclidean space. We assume that this Euclidean space contains the con- 
tinuum being studied. Functional derivatives of the components of the fundamental metric 
tensor of the generating Riemann space define the kinetic stress tensor as c + 0. 

We assume that the energy mome turn. tensor is proportional to the functional derivative of 
the fundamental geometric invariant 9 4. Let us set 

I’“” = e-r (Rp” - ‘j2 g” R) (2) 

where TW’ is the energy-momentum tensor; the remaining notation is standard. 

As a result of passing to the limit as s + 0 we obtain a general solution of the eqnations 
of motion of a continuum element from (2) [2J: 

1 
Qi* - pV{ta == .) 

-[ 

‘r (vi i (P4) 
+ 

aa (q, + 94) I a% 
_-- 

a.r';axk adad @ ap (‘Pk + ‘Fj) 

1 a2 (Cpi f cpr) 
skj - pz’kvj = - 2 a~azJ( 

(3) 

(4) 

i w~kfa 

P’ .i -= -2cn axi at 
(5) 

Here ulk is the stress tenior, v the velocity of a continuum element, ‘p the density. The 
indicen 1, k, j generate a cyclic permutation of the numbers 1, 2, 3. We henceforth neglect 
nonlinear terms in the components of the three-dimensional portion of the kinetic stress ten- 
sor in Expressions (3) to (6). The generality of (3) to (6) results, in particular, from the pos- 


