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A number of problems on elastic equilibrium of circular plates of variable thickness and of
shells of revolution, can be reduced to integration of hypergeometric equations (Either
Fuchsian or degenerate). Some particular solutions of these equations are logarithmic. In
copnection with the construction of solutions of such problems described by second order
hypergeometric equations, the author introduced in [1] a hypergeometric function @ (s, b; ¢;
z) of the second kind and established its fundamental functional relations analogous to
those available for the hypergeometric function F {(a, 3; ¢; 2).

Functional relations of @ (a, b; ¢; z) have found applications in the theory of circular
plates of variable thickness, conical shells of linearly variable thickness [2, 3 and 4] e.a.
At a later date this function was investigated by Norlund in [5] who also introduced

another function

Y (a,b;c;2)=®(a b;c; )+ W@ty ® —P ) — —dU)]F(a, b ¢ 2z)

(¥ (2) = d 10 T (a)/da) (0.1)
and in his paper functions ® and ¥ were denoted by G and g respectively. Here we have ad-
opted the notation W(a, b; ¢; 1) as logically related to ¥ (a; ¢; 1) which was used in a log-
arithmic solution of a degenerate hypergeometric equation given in [6], p. 248.

Functional relations for ¥ (a, 5; ¢; z) which we shall also call a hypergeometric func-
tion of the second kind, are simpler than those for $(a, 3; ¢; z).

Fairly recently, various authors [3, 4 and 7 to 10] introduced generalized hypergeomet-
ric functions of the second kind and investigated some of their properties in comnection with
problems on asymmetric deformation of circular plates of variable thickness and of hollow
conical shells of revolution.

We shall denote a generalized hypergeometric function of the second kind containing a
term with Inz, by @ (Qypeesy a; ,31...., ﬁq; 2). In analogy with the functions (0.1) we in-
troduce, for this case, a function

p¥q @1y Upi Buyenns Bgi 2) = p®@g (O,e.ey A Buyeees Bys 2) -+

[ @)+t P (@) —$ Br) —.— P (B) — P ()] pFg (@1,---, @3 Prye-- Bgi 2) (02)
Generalized hypergeometric fanction of the second kind containing terms with Inz and
(Inz)2, terms with In z, (In2)2 and (In z) 3 etc. shall be denoted by P q(z)'(al,..., Aps Byreses

By )y 0D (@ye0ns@yi Bypeees Bg z) etc.

The purpose of the present paper is to generalize the results obtained by the author and
his collaborators on the properties of hypergeometric functions of the second kind and to
illus:rhatlel it with examples of their effective use in problems on the state of stress in plates
and shells.

1. Some fundamental properties of hypergeometric functions. The
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basic system of particular solutions of a hypergeometric Eq.

cl—2 2t le— @+ b4+ 1)z S =0 BRY
near 2= 0 when c= 1+ mim = 0, 1,...) and a, b # 1, 2,..., m, is given by functions
L lalnlbly, 2
F(a,b;c;z)=1-+ El_[—:]—n_n—ﬁ (1.2)

e ]

Qa, bye;zy=zF(a, b c;z)+ 2 (_i)”‘l—(ﬁ:—*—éwj& P

et [a —n]p [b—n]y

o n
laly [bln st 1 1 1 1 .3
+2 {e]n Tgl\/a --S—1+b»»}-.\’—l——-c+s——1~_~7> (1.9

==L

alp=afe ~1}.. . (a-n—1), las = 1)

The linear combination (0.1) of particular solutions (1.2} and (1.3) should also be con-
sidered as a logarithmic solution of {1.1).

Functions ®la, b; ¢; z) and ¥(a, b; ¢; z) are single valued analytic functions of z in the
region |argz| <7 with a cut along the real axis from — oo to 0. They can be represented
within a unit circle |1 < 1 by expressions of the type (1.3) and (0.1), containing convergent
series. Outside the circle of convergence they can be found by the method of analytic con-
tinuation of indicated expressions.

Expression {1.3) becomes meaningless for O (g, b; ¢; z) when one of the parameters a
and b assumes one of the following values: 1, 2,..., ¢ — 1, and (0.1) becomes meaningless
for ¥{a, b; ¢; z) when, in addition, @ or 5 becomes zero or assumes a negative integral
value, In these cases, particular solutions of (1.1) will be rational functions. We shall not
consider them in this paper and we shall therefore assume that 6, b # ¢ — l,..., 1, 0, —=1,...

In[1] we gave for the function ® (s, b; ¢; z) the differentiation and integration formulas,
a transformation formula, dependence of functions on their arguments z and 1 — z as well as
some recurrent relations for functions whose parameters 6, b and ¢ differed in values by
whole numbers and a full system of recurrent relations between contiguous functions.

Using (0.1) to pass to functions ¥ (a, b; ¢; 2) in the formulas and relations just mention-
ed, we can see that most of them become simplified in the process. Below we give the ba=-
sic functional relations for ¥ (a, b; ¢; z) which have been found useful in constructing sol-
utions of problems on axisymmetric deformation of circular plates of variable thickness and
of shells of revolution (conical shells of linearly varying thickness and spherical shells of
constant thickness).

A differentiation Formula

di\}’(a, bes) - W iy et (1.4)
E c
a transformation Formula whena+ b=0,+ 1, ...
Yia. bnep 2) == (1 — 29V W (e g, ¢~ b; ¢} 2) (1.5)
and a set of 15 relations between contignons functions
f.le—2a—(—az2l¥+a(l —2) P a+ 1) —(c—a)¥la—1) =0
2. (0 —a)¥ +a¥(at1)—b¥GB+1) =0 (1.6)

4. bt —(c—a~—1)z1¥ -+
e =Y =D —c—~1) (1 — ¥ (e —1) =0
5. cfe—1—@c—a—b—1)z1¥ +
Yle—a)c—B:z¥(cH+ ) —clc—1) (1 —W(—1) =0
¥ —=Y¥ia b ¢ 2, Y@+1)=¥{a+1 b ¢z
Yo+ 1)=Y@@bt1 ¢ 2), ¥(ct+1)=Y¥(, b c41 2
which outwardly coincides with 15 Gaussian relations for contiguous functions F (a, b; ¢; 2)
(see[11], p. 130).
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Linear dependence of hypergeometric functions on z and 1 — z whena+ b =054 1,... is
given by

¥(a, b;o;oz)=(—1) ra I‘(’:)l « —bf?:_(f]')‘ o (1 — z)ab -

X F(ec—a, ¢—b; c—a—0b -1, 1—1z)

c=1+mm=0 1,50 b1, 2. jagzl<xfagd —2) [ <n 17

Formulas (1.4) and {1.5) also coincide with the corresponding formulas for F(a, b; ¢; 2).

We should note that the condition a6 + &= 0, + 1,... holds for {1.5) and {1.7) in problems un-
der consideration.

Applying the relations {1.6) once again, we can derive linear relations between ¥ (a, 5;
¢; z) and another two functions of the type W{a + I, b+ m; ¢ + n; z) where I, m and n are
integers and in which coefficients are polynomials in z. The latter relations also outwardly
coincide with corresponding recurrent formulas for F(a, b; c; z). Integral representation
and a formula for analytic continuation of ¥(a, b; ¢; z) are obtained as particular cases of
(4.7) and (4.8) for ‘I’ g (Xyreennd, 3 B gpeens Bys 2)e

2. Logarithmic solutions of hypergeometric equations of higher
order. A hypergeometric equation of the (g + 1)th order has the form

B R
~z(z—-+a1) ( +am W =0 (2.1

where Agyeens &y, and 81""’ ,8 are arbitrary complex parameters while p and ¢ are positive
integers {p L ¢ + 1). When p = q + 1, then Eq. (2.1) is Fuchsian and has three essential sin-
gularities 2= 0, z =1 and z = oo, When p < g, then (2.1) becomes a degenerate hypergeomet~
ric equation of the (g + 1)th order with one essential singularity z = 0 and one removable
smgulanty z = oo, If none of the parameters B (r =1, 2,e.., q) and none of the differences

—Bils#4¢ s, t=1, 2,..., g) are equal to zero or to an integer, then the basic system of
parncular solutions of (2 1) has the form [12 and 13]

I’Il——— q(&"«h..., }l? Blv""Bq; Z) (2.2)

W/nu:z ’n F (1+a1_Bn’--- ~;—OC — Bs Z“Bn
1+81—Bn a-'-v1+Bq—"Bn7z) (e =1,2,...,9)

) [arln n "
qu (al,. . -xdpt B],, .. Bq, b) = + Z —31"]"""‘—%8—;%' % (2.3)

n=1
where F_is a generahzed hypergeometric function and an asterisk means that the parame-
ter 1+B - 8 is dropped .when s = ¢.

Series (2. 3) converges for all finite z when p £ ¢ and for |z| <1 when p = ¢ + 1. When
some of the parameters o8 =1, 2,..., ¢) assume positive integral values, then (2.1) has a
corresponding number of loganthmxc solutions, which can be obtained in terms of various
forms of gmerahzed hypergeometric functions of the second kind.

Heg Ry=1+m {m=0, 1,..), then, using either the method of limits [2] or the Frobe-
nius methodlflﬂ we can obtain the followxng second particular solution

o= @y (2.3 b +m, Ba, .. By 2) =
=z, Py, sap L m, Bey L By 2)

”4(;: -*2) f: sm—aily [Be—nln .. [Bg — 1], o
LI B TR P TR 7+

(s} n
N _[allrr l:lp]n " ___I__ v
u “ 11 "']n'B]n- fsn;]n ! f;{(al+3—'1 + . +Clp+8—-1
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1 1 — ____1__L)
T Bg+s—1 s (2.4)

m-+s By -s—1

(2,1, . cr=1,..,,p)
=14+m and B —1+k(m,k=0 1,000 m K k), a third particular solution is obe

When 8
tained by Lﬁe Frobenius method in the form [10]
W=, 0,0y .. 005 1+m1+k ... Bs2)=

=—-(l'ﬂZ)2 pFQ(alv"-rap; 1+ma 1+k1'°'v Bq; Z)+
+2Inz @y, ..., 25 4 +m, 1+ k&, ...,B; 2)+

< ma (= m—nly L k—nlp .. By—nly ,
+ 2 El (_1) [al - "']n- c [ap _‘n]‘n * A-nz "+
k
™ (n—MWNn—m—DIt +k—nl, ..[Bg—nrlp __
+2(=1)"m! n_zm_'_l [o1— nln. . [0p—n]y z" +
[o1]n. - - [2pln (A,2— B,) _‘:ﬁ (2.5)

+ 2 L n R

@r=t, ..., ks r=1,..., p)

n
O S S E
n
B"=§ll_«Tx‘+‘Ei——1>’z+”'+<ap+1s—i>2‘ G e
nt
- L —-1 (2.6)
ap—n+ts—1  s—1)

Here an asterisk means that the term 1/(s — 1) is dropped when s = 1.

Using the method indicated above we can obtain logarithmic solutions of (2.1) in the
case when three or more parameters S,(s = 1, 2,..., g) are equal to positive integers. These
solutions are ngen in terms of generalized hypergeometric flmctlons of the second kind,
containing In z in the third and higher powers. Thus if 8, =1+ m. g=l+kandBy=1+
+i(m, k, 1=0, 1,u.; m £k K1), then we have a fourth so’luuon in the form
“”(al,.. ap; L4m 14k 1+, By 2) =

W=
= (lnz)8 plo(@r, ..o tm 1 +E 1410, By 2)—
—3(nz)? Oy (@, .oy 1 +m, 14+k 141, Bs 2)+
+3Inz ,,(Dq(”(cxl...., apy 1 4+mt+k14+10 ..., 8: 2)+
m B ,,_1(”—1)!|1+”‘_”]n-~'[3q—’117} 42 n
+ 3 n§1 ( 1) fos — ]y, .. [u.p— tly (‘1“" + B*n) i
I
. m (n—MNm—m—DN{1+k—nl..[Bg—rnl, _ mak .
— 1 q n — B
+ 6(—1) m.n=§+l TET S T—T Cnz+6(—1)"" <
{
: e — NN —m—1)(n—k—NO){+1—nl,..[Bg—nln__
X mlk! 2 =1 fu—nly. . Jop—aly - . 7

n=l -1
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< [o1lp- . [%p]n 3__. 3 i
+ El [T+ mla (15 k1 [+ Un - [Baln (A7 — 34,5, +2C0) 5
(4, +1,2,....5r=1,...,p) (21
where n
1 1 1 1 1
C"=s§1[m "‘"'+<a,,+s—i>ﬂ_<m-;—s>3“”"(Bﬁs—l)ﬂ‘s‘a]
o 1 1 1
B-n=s§1 [(m_*_'”+(ap-——n+s—1)2—(m—n+s)2_'“
_ 1 1
(Bq—n+s—1>2'(s—1)2]
Con=v(A+m)—Pp(n—m ) 1 1 o
(1 4 m)—( ”2 (et e
. 1 1 1
G—n+s—1 ap—lI.—}—S——i_S——'l) (2.8)

Generalized hypergeometric functions of the second kind (2.4), (2.5) and (2.7) are sym-
metric in parameters « (r = 1,..., p) and in parameters 3, with nonintegral (fractional) val-
ves. Parameters 3, with integral values are written in a nondecreasing sequence and they
define the number of terms with negative powers in the series (2.4), (2.5) and (2.7).

If one or more parameters a,(r = 1,..., p) are equal to one of the values l,..., [ when
B,=1+m,By=1+kand B3=1+1(m, k, 1 =0, 1,...; m kK1), then the number of log-
arithmic solutions diminishes and some of the particular solutions degenerate into elemen-
tary functions. The construction of solutions for various cases of parameters ;. (r = 1,..., p)
and B,(s = 1,..., g) possessing integral values, shall not be considered here.

3. Logarithmic solutions of an inhomogeneous hypergeometric eq-
vation of higher order. The particular solution of such an equation

feg(emm—1) (cg+8—1)— (3.1
—z(z;; +a1). . (Zdiz —{-ap)}W—{—Az’*=0

where A and A are constants and p g + 1, can also be found by means of the above method,
in terms of generalized hypergeometric functions (of the first and second kind) [7]. When A,
A+, =140, = 1,..., then a particular solution of (3.1) is given by

©_ Az
W= AATE=1). BB =D (3.2)

X p+1Fq+l(al+A'v- . -1up+l')1;Bl+A': .. ’Bq’{'}"v 1 +x; Z)
When A= —m(m = 0, 1,...), then the generalized hypergeometric function of the second
kind
Afta—m]y .. .[0p — m]m %
[— m]m [Br— m]p. . [Bq — Ml Br—m— 1)(Bq —m—1)

Xp+t(Dq+1 (1. + m, alv ey ap; 1- + m, Bl) .. 'qu; Z)

a,F=1,2,....mr=1,2,...,p BsFEm+1,m, ..., 1,0, —1,—-2,..55=1,2,...,,4)
is a particular solution of (3.1).

Solution (3.3) loses its sense of one, two etc. of the parameters 3, (s = 1,..., g) are equal
to integers 1,..., m + 1. In this case the expression for a particular solution of (3.1) con~
tains a generalized hypergeometric function of the second kind of the form (2.5), (2.7) etc.,
namely

W(O) —_—
(3.3)
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for hA=—kB =1+mE n=0,1.5%k>m

[or — klg. . . [0p — kx4
Zml(k— m)! [— Kl (B2 —E — 1057 - [Bg—F— 11,0,

xp+1®22+)1(1+kv a’l!"'vap; 1+m» 1+k1 Bﬁy'~-9pq; Z)
erFL2. . r=12,...,p BFE+1 k.., 1,0, 1, 2, 8=23,..., ¢

for A=—0Bh=1~4mB=14+k{l,k,m=0,1,2,.. ;i >k>m)

x (3.9

W(o) —_ (___1)Ii—m+1

[dl —_ l]l .. [(Ip e l]lA
Cmt kRl (l—m(—~ KN [—1);[Bs— 1 — 1]“_1. .. [Bq —]— 1]“1

Xp+1®§1321(i +lv d’lv"na’p; 1+m’ 1+kv 1+l! B39" 3] Bq; Z) (3‘5)
,F1,2,...,.r=42,...,p BsF1+1,...,4,0 1, —2,..,85=34,..., 9

ete.

If A= 1, 2,... then, choosing the linear combination of (3.2) and first of the solutions
(2.2) as a perticalar solution of {3.1), we obtain it in the form of a polynomial in 1.

IfA=—-m{m=0,1,..) and By = 1+ k(k = 1, 2,00; k > m), then, constructing a definite
linear combination of solutions (3.3) and {2.4), we can find a particular solution of a in~
homogeneous Eq. (3.1) in the form of a polynomial in 1/s.

Similar solutions are obtained in cases corresponding to solutions (3.4) and (3.5) if we
put, respectively,

A=—k Bi=14m Bs=141 (>k>m)
A=—1, Bi=14m, Bo=1+k B=1 (U>I>k>m)

4. Some basic properties of generalized hypergeometric functions.
In the papers, {2, 3, 4 and 7] some properges of ®(a, b; ¢; z) are generalized for the func-
tions p@q(ax,..‘,abﬁl,.... ﬁq; 2), Introducing & function p‘l’q(al,..., Ay B peees ﬁq; z) into
functional relations for p‘Dq(aI,..., A Byseres Bys 2) according to the Formula (0.2), we ob-
tain the following basic functional relations.
A differential formula

d . oy, .. ap .

o r¥e= mp‘i’q(a, 4 e b 24m, B, L, By +1: 2) (A1)
and recurrent relations

X

W-(o) —_ (__1)7.'+m+1

(z ??E +aﬂ) p¥q =y p ¥y (A + 1) (4.2)
(5 +Bm—1) o¥o = B — 1) ¥y (B — 1) (4.3)
2y = @Bl Py v (4.9)
dz p*tqg Bm—i—an Prgi\tn » q( m ™ )] .
(an - ﬁm ’{‘“ 1)p\Fq = On p‘Pq (an + 1) - (Bm - 1)p‘P‘q (Bm— 1).' (4'5)
(n=1,2,...,;pm=12 .., 9¢
where
p\{fq:p‘l’q(al,...,ap; 1+m732--'-qu; z)
p‘f'q(an—}—i):pq’q(al....,Qn*{*i,--~,ap; 14 m, Bz,c~-38q; z) (4.6)
p"q(Bm“‘i)zp‘yq(Ql""’ ap; 1+m: BE'~-~;Bm_1v'°"Bq; z)

Relations (4.1) to (4.5) formally coincide with the corresponding relations for pla@qoeess
Qs Byreers B g 5h
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Integral representation for the function p‘yq(al""‘an; 1+m, Bz'"" 8 o 2} in the form
of the Mellin-Burns integral is analogous to the Burns's integral representation for the func-
tioon‘z (al,...,ap; )81,..., ﬁq)[iS] and has the form [9 and 5

T'(o).. .P(dp) v
mIT(B)...T(By ¥ ¢

(wi)m_l (@, 00 T4m B ..., By 2) =

M._i_+§w Tat+9... T +9T(=m—5F(=s) , (4.7

TRt TBF9

(|argz[<min(n, 4;” n>, p=g-+1~p, [z[<1whenp=q+1>

Here the path of integration is curved so that the poles of the integrand function at the
points § = — 0y ~nyeesy —~Qy —n {rn=0, 1, 2,...) remain to the left of the path and at the
s=—m, =~m, - {n = Dy, - 1, 0, 1, 2,..., on the right-hand side of the path. Validity of
{4.7) can be easily confirmed by calculating the integral as a sum of residues of the inte-
grand at the poles ['(=m - s) " ( - s).

When p = ¢ + 1, then a well known method {16] allows us to obtain, from the integral rep-
resentation (4.7), the following formula for analytic continuation of the function

a+1¥q@1e, gy 1+ m. B,y By 2)
into the region lzl >1
(—1ym-t o). .. T(a,,,)
mIT(Ba)... T (B ¥

‘Fq(al..‘. » Cgep 1+;3z,{33,,,,,5q; z) =

gt1 Pla)T (e, —m)Tm—a).. . T(a  —oa) (e, —a). . T, —a)
= t__z}l F(Bz—at)...l"(ﬁq—-a,) X(4.8)
X z;:]!-FQ(at’ af_m’ i+at_32, ey 1 +at——Bq,
o=y o=y, A gy —ay,,. ., Lo —ay, 27

where |arg z| <7 and |2| > 1.

5. Some basic functional relationships for generalized hypergeo-
metric functions. Direct differentiation of the power series (2.5) yields the following
Formulas

d
.Ez_ptbq(z)(al,..‘,ap; 14m, 144k ... ,Bp2) = (5.1)

. Ql..,dp
CAE MR R,

+ 240, @y +1, . 0y + 15 24m, 24K, .00, By + 15 2) -
+(t* = Bo)pFglta+1, ..., ap+8 24m2+k ..., B+ 1; 2)]

O+ 1, .. ap 1 24 m 21k, .., B+ 15 )+

U TN Y ST SR S
ar Loy 14+m 14k Bq
Booe ~eean 4 1 t
e R e S (R B

%:" 2O M (an .o ag A fm, LR L, By 2) =

=AY P e AR b, bR, By A 2)

R3
-

+ g P @t ARl b bk By, z)] 5.2
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Assuming that A=a.ﬂ (n+ 1, p) or A= Bm — 1(m = 1,..., q¢) we obtain, from (5.2), the
following recurrent relations

(z —:—z— -+ an) p(Dq(2) =Qay pa)qu) (an 4 1) + 2pq)q (ay + 1) (5.3)
(2 ;’—z + B — 1) 10 = Bn—1) pO® B — 0+ 2,0, Bn—1)  (5.4)

d m— 1
2 E p(pq(z) = ——“——‘Bc::!(__Bi — a)‘n [pa)q(z) (an + 1) - pq)q(z) (Bm —_ 1) ‘JF
2 2
+ E;pq)q (ap+1)— B 1 pq)q (Bm_n-} (5.5)
(an - Bm - 1) pmq(z) = Oy pd)q(2) (an + 1) _(Bm - 1) p(pq(z) (Bm - 1) +

’j{“ 2pq)q (an -+ 1)_ 2p®q (Bm - 1)
where the notation is similar to that in (4.6). Similar differential and recurrent relations can
be derived for q3(a1,....ap; pever By z).

6. Application of hypergeometric functions of the secend kind to
the theory of plates and shells. We shall now consider some examples using the
following notation: 4 is the thickness of a shell, r is the radius of a circle parallel to the
mean surface of the shell, R is the radius of curvature of a spherical shell, @ is the angle
made by the normal to the mean surface and the axis of the shell, @ is the angle made by
the meridian and the axis of a conical shell, N, and Ng are meridional and tangential stres-
ses, ¥y, and %4 are the changes of curvature, E and v are the elasticity modulus and the
Poisson’s ratio, ! is the meridional coordinate for a conical shell, r and 8 are polar coordin-
ates for a plate, w is flexure of a plate, T ~ T, is the change of temperature and a, is the
linear coefficient of thermal expansion. ‘

1°. Axisymmetric deformation of a spherical shell. The homogeneous equation of this
problem, in terms of a complex function taken as a solution,

N =N_+kowy (ko= (v4in) k3 /c?R, = Ve REJRE W2, o2 = 12(1 —v2))6.1)
is transformed, on introducing a new function W and another variable & given by

N = cos@W, t = sin® (p/2)

(5.6)

(6.2)

into (1.1), in which
z2-=% a,b.=3+8, 8=1V5TFhp c=2
Using particular solutions (1.2) and (0.1), we obtain the following general solution
W=C F@-+98 3%—08 2, E)+C¥ ¥+ 8, 3,— 8 2; ) {6.3)
where C; and C, are complex constants of integration. Applying, subsequently, a well known
transformation formula for F (a, b; ¢; z), Formula (1.5) and relation (1.7) for ¥ (a, b; ¢; 2)
and passing to new constants of integration, we obtain
W= Cy( — B F( ot 8, Yy — 62 B) + Cyf E1F (U + 8, Yy — 8 2 1 — E) (6.4)
When the tables of solutions were computed covering all stresses, moments and displace~
ments, only four infinite series defining functions.
Re F (1 +81Y, — 8 ¢;8), ImF @y +8,Y,—86E) (c=203).
were summed.
2° Axisymmetric deformation of a conical shell of linearly varying thickness.
h=hy(1l —z) z=1ly (hy ly=const; 0<z<1, 02> —1) (6.5
The homogeneous equation of this problem in terms of a complex function

N =N +k(l—x)u,

. , . Fhed o Io? ] Aot (6.6)
ko= (—1t--v Lip) 2 = (et Aoctgfa— (L —w | .
( o = ( v D) ctloClg & P (CU ) g5 ( ) ) )

is given by (1.1) in which
c=x; We=N, a,b=Ya+8, &8=V%—2vFip, c=3

The general solution for N has the form
N=CF @48 Yy—8 35 2)+ C¥(lL+8 1y—8 3; 2) 6.7)
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and it can be used whether the thickness of the shell decreases (0K x < 1) or increases
(0> x >> — 1) in the direction of the outer contour,

When — 13 x> — o0, we obtain a solution by applyin g analytic continuation formulas to
functions F (a, b; ¢; x} and ¥ (s, &; ¢; ).

When 0 x < 1, then Formulas (1.7) and (1.5) should be used to obtain the second par-
ticular solution (with a constant C,) in terms of F (% + 8, 4 — &; 3; x) and F (% + 3, %4 — &;
3; 1 — x). Subsequent separation of (6.7) into a real and imaginary part and computation of
stresses, moments and displacements in terms of functional relations for ¥ (g, b; ¢; %),
yields expressions for these magnitudes in terms of eight functions [dReF%+5,% -6
cix)and Im F(%+ 8, % -8 e;x) e =1, 2, 3, 4\

Only four series defining functions at ¢ = 3 and 4 are summed. The remaining functions
are obtained by means of recurrence formulas.

3°, Cyclically symmetric bending of a circular plate of radially varying eylindrical rigid-
i

KA =Dyl — z), z=(r/r)" (ry, Do = const; o, =%¥Ym; m =2, 3,...) (6.8)
under the action of contour and surface loads, the intensity is given by

g =g ricoskf (q =comst; j=0,1,...; k=2,3,..)) 6.9)
On substitution of a function W according to
w = @FEW cos kO (6.10)
the problem reduces to integration of a differential Eq. (3.1), in which [3]
3 = p:4, q=3; ﬁ1=1+m, §2=1+mk
22—k 16¢.ri*4
Bt m(t k) A =E2=Rm A=
2 Dom?

The parameters @, (n = 1, 2, 3, 4) are roots of Eq.
ot — A3+ 402 — Ao+ 4, =0
Ay =Gk + Diag+ 2, Ay = [4k + Bk (o + 2) +ag + (7T + v) g + 4lorg?
Ay = R (g + 2) + 2 (@ + Tog + Voo + 4) + g (3 + %) + 20y (3 + v}/
Ay = [K(og — Vo, + 6 -+ 2v) + k(3 -+ V)@ T 2) + 2a4(1 + v)] /agd
With the results of Sections 2 and 3 and by substitation (6.10), we obtain a general sol-
ution of the considered problem in the form
w = VM C @y, 0 4+ my 1 mE, 1+ m A omk; 2)
+ Cy ¥ (ay,...a5 1+ m 1+ mk, 1 + m+ mk; z) +
+ C3 @,V (ay,..., oy 4+ m, 4+ mk, 1+ m 4 mk; 2)

4 Cea®® (@ g 4+ m, 14 mk, 1+ m+ mk; 2)+ WD)coskg 61D
where C,(n = 1, 2, 3, 4) are real constants of integration.
The particular solution (@) of a nonhomogeneous Eq. (3.1) when A is not equal to an in-
teger, has the form

W(q} o AIV’ (j+2-k) m-1

A (A4 m) (A + mk) (A -- m - mk) x
XsFg(tr—1 +YVa(j+-2—Kk)ym, ..., 04—1 +Ya(j4+2—k)ym, 1
Y. 0+ 2 — B)m, ) YoG+24+8m Yo(+4d—Bm Y, G+ 44+ Bm, z){6.12)
When A= 1, 2,ecc 0r Ame ~pt{n=10, Lui;m & ¢t <mk), the particular solutions ¥(9) are oh-
tained in terms of polynomials in x and 1/x respectively. Bending moments are computed with

help of the formulas of differentiation of generalized hypergeometric functions given in Sec-
tions 4 and 5.

4°, Cyclically symmetric thermoelastic deformation of a sloping conical shell when ten-
sile and bending deformations are purely thermal.
Y, h A
1oy j 12 ¢ -
Ep = 5 p (T — To)d - - e;r] cos k0, xp == = S ap (T —To) Edf = x, r’ cos k0

—ih —iLh

(e, #;=comst; [=0,1,...;k=2,3,...) (6.13)

Solution of this problem can, after separation of variables and certain substitutions, be
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reduced to Eq. (3.1) in which [4]

z2=agr (@o==+ic®/h, co= VI2(1—+2); p=2g¢g=3
El=i+k’ U3=2’{“k, Bl=21 82721—{-2’(.', 3332.4}-2", ;"=]-k

iEh e
& [z‘e~ ﬁ-u‘xj](f SR AEFDG—R G —k+ 1)

} Co

ao’

Function W is related to the complex function

N =N, + Ny + ko (%, + ) (ko = + IEh%/ ) (6.14)

which is a solution of this problem, by the following Formaula:

N = ZXW cos k8 (6.15)

The general solution for the function N has the form

N =[Cyzk sFs (4 + k, 2+ & 2, 1 + 2k, 2+ 2k; 2) +
+ Coth ¥ (1 + K, 2+ Ky 2, 12k, 24 2k 2) + 6.16)
4 Cyz* JFa (1 — k, 2 — k; 2, 1—2k, 2—2k; 3) +

+ Cuz¥* Oy (1 — k, 2 — k, 2, 1—2k, 2—2k; z) + N'T] cos 40

where €, (n = 1, 2, 3, 4) are complex constants and function N(T) has the form

AU+ 1 7+ 2L
e —7— DN =D+ Klypei U+ 5+ 1y
X OBk —f+1, 14k 24k 2, k—741, 142k 242k 2) (6.17)

F

NT)

when =0, 1, 2,0ee, k — 2.

When j = k& — 1, k,..s, the function N(T) can be obtained i the form of polynomials [4.
Having obtained a solution for N, we can find solutions for remaining complex stresses

and moments using the well known formulas [4] together with the formulas for differentiation
of generalized hypergeometric functions, given in Sections 4 and 5.

In the third and fourth particular solutions (with integration constants C3 and C,) hyper-

geometric functions reduce to elementary functions.

1.

2.

3.
4.

6.
7.
8.
9.
10.

1l.
12.

13.
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ON THE DETERMINATION OF KINETIC STRESS FUNCTIONS
IN ELASTODYNAMICS PROBLEMS

PMM Vol, 31, No. 4, 1967, pp. 701-703

N.A. KIL’CHEVSKII and E.F. LEVCHUK
(Kiev)

(Received April 19, 1966)

The purpose of the paper is the development of a new method of solving dynamic problems
of elasticity theory by introducing kinetic stress functions [1 to 3]. Equations which the
kinetic stress functions satisfy are presented here, and the form of the general solution of

these equations is found.
Let us consider the square of a line element in some Riemann space, which we shall

designate as generating:
ds® = [1 + e@ux (2, 8)] dakdxk — 2 [1 + eqq (27,0)] de2 (k,  =1,2,3) (1)
where ¢ is an arbitrary small parameterm ¢? a constant to be determined, @, (x/, 8) = @ (z }
%2, x3, ¢) the kinetic stress functions. It is seen from (1) that for €= 0 the Riemann space
degenerates into a Euclidean space. We assume that this Euclidean space contains the con-
tinuum being studied. Functional derivatives of the components of the fundamental metric
tensor of the generating Riemann space define the kinetic stress tensor as £+ 0.
We assume that the energy momentum tensor is proportional to the functional derivative of
the fundamental geometric invariantn['ﬂ. Let us set
T =g 1 (RPY —1/, g™ R) (2)
where TH¥ is the energy-momentum tensor; the remaining notation is standard.
As a result of passing to the limit as € » 0 we obtain a general solution of the equations
of motion of a continuum element from (2) [2]:

, A [E@ T @t 1 e y (3
Sit —PYi° == [ 3ok ark 9z & a0 (Px + ¢)) J
1 (9, + 1) (4)
RO M w7
s 1 (P +@) (5)
P T 2a oxiot
1 (s -+ 9a) + 3 (@1 + Ps) + 9 (@1 + @2) (6)
P aa L orioxt Xy o393

Here 0, is the atress tensor, V the velocity of a continuum element, p the density. The
indices i, k, j generate a cyclic permutation of the numbers 1, 2, 3. We henceforth neglect
nonlinear terms in the components of the three-dimensional portion of the kinetic stress ten-
sor in Fxpressions (3) to (6). The generality of (3) to (6) results, in particular, from the pos-



